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SUMMARY 
A Chebyshev collocation method is proposed for the computation of laminar flame propagation in a two- 
dimensional gaseous medium. The method is based on a domain decomposition technique associated with 
co-ordinate transforms to map the infinite physical subdomains into finite computational ones. The influence 
matrix method is used to handle the patching conditions at the interfaces. This technique is particularly 
efficient since at each time step only matrix products have to be performed. The method is tested first on an 
elliptic model problem; it is then applied to laminar flame computations, including calculations of cellular 
instabilities of flame fronts. 
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1. INTRODUCTION 

For simple (Cartesian) geometries the efficiency of spectral methods is supported by strong 
theoretical and numerical evidence (see e.g. References 1-3). An important advantage of these 
methods is that for smooth solutions of differential problems a high accuracy can be obtained 
thanks to the rapid (in some cases exponential4) rate of convergence of the polynomial 
approximation. This, combined with the existence of fast transform algorithms, makes spectral 
methods particularly attractive for a large class of problems. However, spectral methods still suffer 
from two major drawbacks: 

(1) They are restricted to simple geometries. 
(2) They are not well suited for problems whose solutions exhibit sharp inner gradients. 

One possible remedy resorts to mapping techniques. For problems with complex geometries the 
use of mapping techniques to reduce the complex physical domain to a simple Cartesian 
computational domain was first advocated by O r ~ z a g . ~  However, this is not always possible to 
perform in a single map and more elaborate techniques have to be found. The use of mapping 
procedures can also be useful for problems exhibiting solutions with sharp gradients. This was 
investigated by Badesvant et aL6 and Brachet’ using a fixed co-ordinate transform, while Guillard 
and Peyret* and Bayliss and Matkowsky’ have proposed a self-adaptive procedure to define a 
mapping adapted to the computed solution. However, in some cases this can lead to expensive 
computational procedures. 

An alternative solution is the use of domain decomposition methods. While for problems with 
complex geometries they can be simpler to implement than mapping techniques, they can also be 
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very useful for the computation of high-gradient solutions as an adequate resolution of the regions 
with large variations can be reached by the introduction of additional domains in these regions. 
According to the classification by Quarteroni," domain decomposition methods may be split into 
two subgroups: methods of variational type and patching methods. 

Methods of the first group use the same variational formulation as the conventional (h-version) 
finite element method. These methods include the p-version of the finite element method studied 
by Babuska et d . l l  as well as the spectral element method of Patera'* and the global element 
method introduced by Delves and Hall.13 

Instead of the conventional Galerkin formulation, patching methods are based on a collocation 
procedure. The principle of these methods is simply to collocate the equations at every internal 
collocation point while continuity of the solution and of the first derivative is enforced on the 
interface collocation points. From an algorithmic point of view, the linear system arising from the 
collocation equations can be solved by either an iterative or a direct method. An iterative method 
for the Helmholtz problem is described in Zanolli14 and Funaro et while a non-iterative 
method based on the use of the influence matrix technique is proposed in Macaraeg and Streett,I6 
Marion17 and Pulicani.'* However, in this latter work the solution in each subdomain is obtained 
by a tau method instead of a collocation one. 

The purpose of this paper is to investigate the application of a domain decomposition technique 
to problems exhibiting sharp gradients, namely flame propagation problems. The proposed 
method is a direct patching method for the solution of parabolic equations in an infinite domain. It 
is characterized by the following features: 

(1) The domain is split into three subdomains and a co-ordinate transform is performed in the 

(2) The inner domain can move to follow a structure of interest. 
(3) A Chebyshev collocation procedure is used in each of the three subdomains and the 

continuity conditions at the interface are imposed via an influence matrix technique. 
(4) At each time step the discrete systems are solved by a diagonalization algorithm. 

The multidomain method is described in Section 2 while Section 3 is devoted to the presentation 
and discussion of the numerical results. The efficiency of this numerical procedure is first shown on 
a model problem. It is then applied to computations of the propagation of one-dimensional 
flames. Finally the numerical algorithm is used for the computation of cellular instabilities of a 
two-dimensional flame front propagating into an infinite channel. 

two extreme subdomains in order to map [- 1, I] into a semi-infinite domain. 

2. NUMERICAL METHOD 

For the description of the method we shall use the parabolic problem 

ae - -A$=o(e)  in D = ] - c o ,  + o o [ x ] - a ,  +a[  
at 

with the boundary and initial conditions 
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The domain D is then split into three subdomains defined by (see Figure 1) 

D- =]-a, XI[ +-a[, 

D, =ixl ,  x2r x 1 --a, +-a[, 

D, =]x2, + CO[ x ]--a, +-a[. 

The points x1 and x2 delimiting the inner domain are allowed to move with a velocity V ( t )  = x i  (t) 
=xi@). This will permit us to follow a structure of interest (a flame front in Section 3.2) as it moves 
inside the domain D. 

In order to use a Chebyshev collocation method each subdomain is mapped into the square 
] - 1, + 1 [ x ] - 1, + 1 [ by a suitable co-ordinate transform: 

Here the functions g j  are defined by 

where 6, are positive constants; 6- and 6, characterize the slope of the co-ordinate transform at 
the interfaces x1 and x2 respectively, while 6, = x2 - x1 is the (constant) width of the inner domain. 
Then in each subdomain the solution 0, verifies an equation of the type 

aej ae . 
_- A,U J - Ajej  = w(ej)  
at at 

with 

a 2  a 1 a 2  A - C . - + B . - +  -- 
j -  J a g 2  J a g  -a2 a123 

t y  

a 

Figure 1 .  Domain decomposition 
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where Aj,  B j  and C j  are functions of 5 via the mapping x = gj( t ) .  For each transformed subdomain, 
boundary conditions have to be imposed. The physical boundary conditions (2) become 

while we have to consider patching conditions at the interfaces x =xl  and x = x2. This can be done 
in various ways (see Reference 10 for a review). Here we choose (as in References 5 and 18) to 
enforce the continuity of the function and of its normal derivative at the interface, i.e. 

for the interface x = x1 and 

for the interface x = x2. 

condition 
Equations (5) with the boundary conditions (7), the patching conditions (8H11) and the initial 

ej(t9 '19 O)=e,O(t, '11 (12) 

completely determine the problem. 

scheme: 
Equation ( 5 )  is then advanced in time by a second-order Adams-Bashforth/backward Euler 

At each time step this reduces the problem to a linear elliptic equation of the type 

(14) A .0 .- .= E . 
J J  J J 

with the boundary conditions (7) and the interface conditions (8H11). 
The main difficulty of the above problem is to enforce the interface conditions in an efficient 

way. Iterative procedures can be used as done in References 14 and 15; however, for unsteady 
problems the use of a direct method leaving the major part of the computations in a preprocessing 
stage could be of interest. Hence for this problem we have used the so-called influence matrix 
technique. This technique has become popular in spectral methods since the work of Kleiser and 
Schumann" who applied it for handling the incompressibility conditions and related boundary 
conditions for pressure using the Navier-Stokes equations. This method has often been used in 
various circumstances, in particular for Chebyshev domain decomposition. l6 However, to our 
knowledge, the method has only been described for one-dimensional problems' O, 18. Here, 
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although the problem is two-dimensional, the domain decomposition is made in one direction, so 
that the basic principles remain of a one-dimensional nature. Therefore in the following we briefly 
describe the technique, emphasizing only the particulars associated with the two-dimensionality 
of the global problem. 

First we write the solutions B j  as the sum of two functions: 
I -  ej= ej+ 6,. 

gj are the solutions of equation (14) with the boundary conditions 

and then they satisfy the physical boundary conditions (7) and the interface conditions (8) and (10). 
However, they do not satisfy the interface conditions (9) and (1 1). The enforcement of these 
conditions is obtained via the correction terms 4 which are solutions of the homogeneous elliptic 
equation 

- -  
Aj8j - d j  = 0 (16) 

with the boundary conditions 

ah 
-(t,+l)=O, j E { - , 0 ,  +}. 
all 

We note that for any functions h -  and h , ,  Oj=gj7-gj are solutions of equation (14) with the 
physical boundary conditions (7) and they satisfy the continuity conditions at the interfaces (8) and 
(10). However, the continuity conditions (9) and (11) of the derivatives at the interfaces are not 
automatically satisfied for any h -  and h + .  Thus we now have to define these functions in such a 
way that these conditions are verified. 

For this we need to enter into the description of the spatial approximation. Let PN,M be the set of 
polynomials of degree at most N in and M in q. The solution 0, is assumed to belong to PNj ,M,  
where N j  is the degree of the approximation in 5 in the subdomain Dj. This solution is calculated 
by a collocation method based on the Chebyshev points: 

nn 
N j 

tn=cos----; n = O , .  . . , N j ,  j E { - , O ,  +}, 

ma 
flm=c0s-; m=O,. . . , M. M 
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For any function 4j(& 9) its derivatives at the collocation points can be expressed as the 
derivatives of the polynomial that interpolates 4j on the collocation points. The collocation 
method (see e.g. Reference 20) consists of satisfying the differential equations at the inner 
collocation points. This gives a set of algebraic equations for the values $j (&,  rm) at the collocation 
points which is closed by adding the boundary conditions. 

This collocation method is first applied to solve the mixed Dirichlet-Neumann problem defined 
by (14), (15) for each g2 The resulting algebraic system is solved by a full matrix diagonalization 
algorithm”. 22 similar to the one considered in Reference 23 for the tauxhebyshev method. In this 
method the major part of the computation is done in a preprocessing stage before the start of the 
time integration. Then at each time step the computation is reduced to simple matrix products. 

We now need to solve the problem (16), (17) for the 0, and to define the functions h -  and h , ,  
which are given in the collocation approximation by their nodal values h-(qm) and h+(qm),  
m =  1, . . . , M -  1, in such a way that the continuity conditions (9) and (1 1) are satisfied. 

To do that, we write the functions gj as the sum of elementary solutions u? and ut ,  * belonging 
to PN, ,M,  l<m<M-1: 

The time-independent polynomial functions u7, u ? , ~ , ~ E  { -, +}, are solutions of the homo- 
geneous equation (16) with homogeneous Neumann conditions at the boundaries ?= f 1 and 
homogeneous Dirichlet conditions at the boundaries 5 = k 1, except at the interfaces between the 
subdomains where 

u”,(f 1, ? k ) = 6 k , ,  (k, m = l , .  . . 9 M-I), (21) 

u!,+(T 1, V k ) = & , m  (k, m =  1,. . . , M- I), (22) 

with h k , , ,  the Kronecker symbol. The problems defining these elementary solutions are solved by 
the collocation method associated with a full diagonalization procedure as done for the 
calculation of iTj. 

Writing down the continuity conditions (9) and (1 1) for the c-derivatives at each collocation 
point located on the interface gives a linear system 

AH = G, (23) 
where H is the vector of the unknowns h*(qm), m =  1, . . . , M- 1. G depends only on the 5- 
derivatives of gj. The influence matrix A depends only on the t-derivatives of the elementary 
solutions and hence can be computed and inverted once and for all at the beginning of the 
computation. Solving (23) gives the hj(qm) and then the required correction term 4. 

The global algorithm is thus composed of the following steps: 

(1) In a preprocessing stage the solutions uy , ut ,  * are computed and stored, then the matrix A is 

(2) At each time step the system (14), (15) is solved for each g2 
(3) With these solutions the right-hand side of the linear system (23) is computed and the vector 

H is obtained by multiplication by the inverse of the influence matrix. 
(4) Equations (19) and (20) give the correction terms 
(5) Finally the solution is obtained by adding the two components gj and 

computed and inverted. 
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3.1. An elliptic model problem 

We consider the problem 
Au- au = f 

with homogeneous Dirichlet boundary conditions in x and homogeneous Neumann boundary 
conditions in y. The function f is chosen such that the exact solution of (24) is u = e-xz cos(zy) with 
a =  10. 

The spectral multidomain method described above is then applied to (24) with the following 
domain decompositions: 

decomposition l:Do =] - 1, + 1 [ x 3 - 1, + 1 [, 
decomposition 2:D0 =] - 2, + 2[ x ] - 1, + 1 [. 

For both cases the values 6-  =6+ = 1 have been considered in the co-ordinate transforms and the 
number of polynomials in the y-direction is equal to 17. Table I shows the evolution of the error as 
the number of polynomials is increased in each of the subdomains. 

Table I. Evolution of the error for the model problem. 
EY and E," are the discrete maximum errors on the 
collocation points for decompositions 1 and 2 respect- 

ively 

6 10 6 2.73(-3) 1'11(-3) 
12 20 12 2.26(-4) 2.42(-6) 
20 30 20 5.25 ( - 6) 3.80 (- 8) 
20 40 20 5.25 (- 6) 3.80 (- 8) 
30 40 30 1.52(-7) 4.65(-10) 

It can be observed that decomposition 2 gives better results than decomposition 1. This means 
that the extent of the inner domain plays an important role in the overall accuracy: the location of 
the interface with respect to the large-gradient zone is critical. Table I shows that a good accuracy 
is obtained even with a very small number of polynomials. By comparing the last three rows, it 
appears that a highly accurate representation of the solution requires a sufficiently large numbers 
of polynomials in the outer domains even if the solution is quite smooth in those regions and 
decays very rapidly. It is possible that the stretching to infinity (4) is responsible for this situation 
and a domain truncation could possibly give better results. In fact it has been shownz4 that 
domain truncation gives better convergence than mapping to approximate the function e-xz when 
the length L of the finite domain and the analogue of the parameters 6 * in (4) are optimally chosen. 
On the other hand, as experienced by Grosh and Orszagz5 and justified by Boyd,24 algebraic 
mapping is much less sensitive than domain truncation to the precise value of L or 6,. Moreover, 
for functions decreasing as e-cx at infinity (the behaviour we expect for the solution of the flame 
propagation problem) both techniques give the same rate of convergen~e .~~ 

3.2. Application to flame computations 

3.2.1. Problem formulation. Let us consider a flame front propagating in a two-dimensional tube 
of infinite extent in the direction of propagation of the front. For simplicity we assume that the 
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combustion processes can be described by an overall one-step exothermic reaction and that the 
combustible mixture is composed of a homogeneous gas H containing only small traces of a 
reacting gas R. Therefore the thermal conductivity A, specific heat C, and molecular weight of the 
mixture may be considered as those of the gas H, while the only diffusion coefficient that is to be 
considered is the binary diffusion coefficient D of R in H. We make the usual assumption of 
constant thermal conductivity 2, specific heat C ,  and Lewis number Le = A/pC,D. Considering 
that the combustion process is an isobaric one, the species and energy conservation equations are 

(25) 
ar 

PC, ~ + pC, V .  V T  = AA T + Qo, 
at 

a y  1” 
at C,Le 

p - + p V .  V Y = ~ A Y- O. 

Here t is the time, Y is the mass fraction of the limiting component R, V is the velocity, p is the 
density of the mixture, Q is the heat of reaction and w is the reaction rate given by the Arrhenius 
law 

w = p B  Yexp ( -A). 
where B is the frequency factor, taken here as a constant, Ro is the universal gas constant and E is 
the activation energy. 

In this paper use will be made of the thermodiffusive model and thus we shall neglect the density 
change across the flame front and make the assumption p =constant in equations (25) and (26). 
Therefore there is no longer a coupling mechanism between the velocity field and the heat release, 
and the velocity of the gases remains identically equal to zero as the flame front propagates 
through them. 

Introducing U ,  the normal propagation velocity of the planar deflagration wave, we take as 
units of time and length to=A/pU2Cp and Z,=I/pUC,. With these units the equations (25H27) 
take the form 

ae 
-= A0 + w, 
at 

a y  1 
-- AY-O, 
at Le 

-- 

w = AB2 Yexp 

where Y stands now for the non-dimensional mass fraction Y/Y,, with Y, the mass fraction of the 
reactant R in the fresh gases, 8 is the reduced temperature e=(  T- T,,)/( Tb- TJ, with Tb the 
adiabatic flame temperature given by T, = T,, + (Q/C, )  Y,, B is the Zel’dovich number equal to 
( E/RoTi) (  Tb- TJ,  c1 is the thermal expansion parameter ( Tb- T,,)/T, and A has the value 

ApB e(-E/RoTb) 
A = -  

( P W C ,  B2 . 
In the limit of infinite activation energy, asymptotic methods give26 

2(3a - 2.344 + Le) 
B 
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In this study we shall use the first-order value for the parameter A: 

For finite (but large) values of the activation energy, this simply implies that the propagation 
velocity of the one-dimensional deflagration wave is slightly different from unity. In the following 
section we shall use the numerical method described in Section 2 to compute this deviation and 
compare it with the value obtained from (29) and (30). 

3.2.2. One-dimensional jlame propagation. Spectral multidomain methods are just at the be- 
ginning of their development and so far the only application to reactive flows seems to be the 
recent work of Macaraeg et aL2' on the calculation of a one-dimensional shock wave flow with 
chemical reactions. Here we apply the Chebyshev multidomain method to the computation of 
flames described by the one-dimensional version of equations (28). Let U be the normal 
propagation velocity of the planar deflagration wave. In a reference frame moving with speed U ,  
the steady state form of equations (28) is 

which gives the relation 
+ m  

odx. (34) 
- m  

The solution of (32), (33) is computed by the following procedure. The numerical method described 
in Section 2 is applied to equations (28) where at each time step the two points x1 and x2 delimiting 
the inner domain move with a velocity defined by the integral (34). Appendix I details the 
numerical evaluation of this integral. This procedure allows us to keep the moving flame front in a 
well resolved region. The initial conditions are chosen as the asymptotic steady solutions of (32), 

e(x, 0) =ex if x d 0 ,  

e(x,o) = I  otherwise, 
Y(x,  0)  = 1 -eLex if x d o ,  

Y(x, 0)  =o  otherwise 

(3 3): 

(35) 

and the computation is performed until the residual defined by 

/en + (i, j ) - en( i, j )I 
St 

I yn+l( i ,  j ) -  Y"(i,j)l 
st R=max 1 SUPi,j 

where  SUP^,^ denotes the maximum value over all the collocation nodes, becomes smaller than a 
given threshold. 

In all the computations reported below, the thermal expansion parameter is given the value 
a = 0 4  and St is equal to lov2. The following discretization is used: N -  = N +  =24, N o  =36 and 
6, = x2 - x1 = 1. In order to simulate a one-dimensional computation, we have used the value M = 3. 
Figure2 shows the temperature and reaction rate profiles obtained at  steady state for the 
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Figure 2. Temperature and reaction rate profiles with the discretization N -  =24, N ,  =24 and N , = 3 6  

following values of the parameters: p =  10 and Le= 1. The distribution of the collocation points 
resulting from the multidomain approach is displayed on the x-axis. One can see that the 
collocation points are clustered in the flame front, providing a very good resolution of this region; 
as a result no oscillations appear in the computed profiles. The result of another computation 
performed with the following values of the discretization parameters-N - = 20, N o  = 36, N ,  = 8 
and 6, = x2 - x1 = 1 . 5 4 s  shown in Figure 3. This result compares very well with that previously 
obtained with a finer discretization; in particular the values of the flame velocity (which is the 
fundamental unknown of this problem) differ by less than This proves that for this problem 
the discretization in the outer domain can be rather coarse provided the flame front region is well 
represented. One can see that the profiles of Figure 3 are slightly offset relative to those of Figure 2; 
however, instead of a loss of accuracy in the computation of the flame velocity, this is rather due to 
an initial shifting and deformation of the asymptotic profiles (35) which appear at the beginning of 
the time integration and depend on the resolution of the flame front as well as on the initial 
location of the inner domain (which was different in the two calculations). 

We now compare the values of the computed flame velocity with those obtained by asymptotic 
analysis for different values of the physical parameters. The asymptotic results are reported from 
Reference 28. 

(a) Le = 0 5  D = 10: the asymptotic velocity is U ,  = 0.946, the computed velocity is U, = 0.949. 
(b) Le= 1 ,  p= 10: the asymptotic velocity is U,=0.9, the computed velocity is U,=0.917. 
(c) Le= 1 ,  p = 2 0  the asymptotic velocity is U ,  =0.949, the computed velocity is U,=0.953. 



FLAME COMPUTATIONS 

r 
509 

$7 

X 

Figure 3. Temperature and reaction rate profiles with the discretization N - = 20, N + = 8  and N ,  = 36 

We note a good agreement between the computed and asymptotic velocities. Comparison of the 
present results with the values obtained by finite difference methods reported in Reference 28 also 
shows good agreement. 

3.2.3. Stability of a plane j a m e  front. In this section we shall examine the problem of the 
stability of a two-dimensional flame front described by (28) travelling in a channel of width 2a. The 
computation of such flames is made delicate because the instabilities occur on a time scale much 
larger than the flame transit time (defined as the ratio of the asymptotic flame thickness to the 
asymptotic flame velocity) and thus requires an efficient (implicit) time stepping to keep the 
computational cost within reasonable bounds. Moreover, the instabilities occur only if the width 
of the channel is large enough with respect to the flame thickness; thus it is necessary to use an 
accurate spatial approximation in order to keep a good resolution in the transverse direction. 

In the limit of large activation energy, the asymptotic study of this problem performed by 
Sivashinsky” shows that the behaviour of the front is governed by the parameter r j  defined by 

B q=-(1 -Le). 
2 

A linear stability analysis leads to the dispersion relationship 

y = ( r j  - 1 - 4v2k2)k2, (37) 
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where y is the amplification factor and k is the wave number of the perturbation. We can deduce 
from (37) that for q < 1 all perturbations are damped out and the flame front is stable, while for 
q> 1 there exists a range of unstable wave numbers from k=O to k ,  =(q- 1)”’/2q with a 
maximum value of y obtained for k,= k , / 2 $ ‘ .  

This theory is now tested numerically using the algorithm described in Section 2. Similar 
computations using different numerical methods are reported in References 8, 30 and 31. The 
initial conditions are chosen to have the form 

w, Y, O)= exP(x-f(Y)) if Xdf(Y), 

Y(X, Y, O)= 0 if X>f(Y), 

with f (y)  =0.5 cos(2ny/A), and represent a flame front perturbed with a wavelength of value I”, 
while the boundary conditions are 

8+0 for x+--00, 
8-1 for x-++co, 

(a /dy)  = 0 at y &a, 

Y+l for x+-co, (39) 

Y-d for x++co,  
(8 Y/ay) = 0 at y f a. 

We choose p=lO and Le=0-7; thus according to equation (37) the range of unstable 
wavelengths is equal to the interval [6J2nn, + a]. 

All the calculations reported below have been done with the following values of the 
discretization parameters-N - = N + = 20, N o  = 36 and M = 6 4 , b  + = 6 - = l-and the time step is 
given the value 6t = lo-’. We first consider A = 2n. In this case the dimension of the inner domain, 
6,=x2-x1, is equal to 1-5. Figure4 displays the evolution of the isotherms. As predicted by 
relation (37), the initially wrinkled flame relaxes to a plane one. 

Next we consider I=2n/k,, the limit of unstable wavelength. The dimension of the inner 
domain is again chosen equal to 1.5. Figure 5 shows the evolution of the isotherms. The 
computation has been performed up to the time t = 100 and shows as in Refefence 31 the 
development of a wrinkled flame front reaching a near steady state. 

Finally we have considered the value A= 2n/k,, which corresponds to the maximum amplifica- 
tion factor. As we expect the development of large cusps of the flame front in this case, the 
dimension of the inner domain is somewhat larger than in the previous case and is here chosen to 
be equal to 1.8. Figure 6 displays the evolution of the isotherms up to the time t = 100 and shows 
the rapid development of the perturbation. We may observe in Figures 5 and 6 that the flame front 
is not entirely enclosed within the inner domain, although the region of large gradient is effectively 
within the inner domain; the part of the front that lies outside the inner domain is less steep and 
also benefits to some extent from the natural clustering of the Chelbyshev collocation points near 
a boundary. 

4.  CONCLUSIONS 

A Chebyshev collocation method has been proposed for the computation of laminar flame 
propagation in a two-dimensional gaseous medium. The principal difficulty in such computations 
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Figure 4. Evolution of the isotherms. The dashed lines indicate the location of the inner domain. 1=2n 

comes from the presence well inside the domain of a zone of large variations of the variables 
uneasily represented by classical Chebyshev methods. 

One possible solution was investigated in Reference 8. There the use of a co-ordinate transform 
to concentrate the collocation points in the flame front was advocated. However, in the case of 
moving interfaces this requires us to define a time-dependent co-ordinate transform which 
changes as the computed solution evolves. Such a self-adaptive mapping can be defined based on a 
minimization procedure such as that of Reference 8. 
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Figure 5. Evolution of the isotherms. The dashed lines indicate the location of the inner domain. i .=2n/k,  

Here we have investigated another solution is which the desired accuracy in the flame front is 
obtained by a multidomain method. In this decomposition technique the flame front is approxi- 
mately enclosed in a moving subdomain which follows the flame front in its movement. The 
continuity conditions at the interfaces are enforced by an influence matrix technique and the two 
infinite outer subdomains are mapped into finite computational domains. The efficiency of this 
method lies in the fact that after a preprocessing stage all the computational effort is reduced at 
each time step to matrix products. 
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A thorough comparison of the efficiency of the two methods is difficult since both methods are 
still in development. For the special case treated in this paper, both methods give accurate results 
and seem of comparable efficiency (note that a Fourier-Chebyshev approximation was used in 
Reference 8 instead of a Chebyshev-Chebyshev approximation). However, the multidomain 
method seems of more general applicability when the interfaces or the geometry are complicated. 
A very interesting direction would be to combine the two methods to benefit from both their 
advantages. This is likely to be the most promising way to construct versatile Chebyshev 
collocation methods for solving more general moving front and interface problems. 
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APPENDIX 

The velocity U ( t )  is defined by 

U = - ’ { ’ “ [  2a - a  odxdy, 

which becomes in the transformed co-ordinate system 

where qj  is a function of 5 coming from the change of variable. Knowing the values of the functions 
qjwj at the collocation points, we can define their interpolation polynomials by a double 
Chebyshev expansion. Then the integration is performed term by term using the classical formulae 
for integration of the Chebyshev polynomials on [ - 1, + 11. 
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